Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ottawa F-65 sand (supplied by US Silica, Ottawa, Illinois) was selected as the standard sand for LEAP-UCD-2017. Between December 2017 and February 2018, each LEAP research team sent 500 g samples of sand to UC Davis for grain size analysis and minimum and maximum dry density testing. The purpose of this testing was to confirm the consistency of the sand used at various test sites and to provide updated minimum and maximum density index values. The variation of measured properties among the different samples is similar to the variation measured during repeat testing of the same sample. Modified LEAP procedures to measure index densities are used to confirm consistency of the sands, and the results from these procedures are compared to results from ASTM procedures. The LEAP procedures give repeatable results with median index densities of ρmin ¼ 1457 kg/m3, ρmax ¼ 1754 kg/m3. Relative densities calculated with facility-specific index densities varied by less than 4%, so we conclude that average index densities from all the sites may be used for analysis of the results. The LEAP procedures are easier to perform than the ASTM procedures and do not require specialized equipment; therefore, continued use of the LEAP procedure for frequent quality control purposes is recommended. However, the values from ASTM procedures are expected to be more consistent with values adopted in liquefaction literature in the past; therefore, we recommend using the median ASTM values for analysis of LEAP data. Index densities from ASTM procedures (ρmin ¼ 1490.5 kg/m3, ρmax ¼ 1757.0 kg/m3) produce relative densities that are 4 –10% smaller than the index densities from the LEAP procedures.more » « less
-
Abstract Collective behaviors in biological systems such as coordinated movements have important ecological and evolutionary consequences. While many studies examine within‐species variation in collective behavior, explicit comparisons between functionally similar species from different taxonomic groups are rare. Therefore, a fundamental question remains: how do collective behaviors compare between taxa with morphological and physiological convergence, and how might this relate to functional ecology and niche partitioning? We examined the collective motion of two ecologically similar species from unrelated clades that have competed for pelagic predatory niches for over 500 million years—California market squid,Doryteuthis opalescens(Mollusca) and Pacific sardine,Sardinops sagax(Chordata). We (1) found similarities in how groups of individuals from each species collectively aligned, measured by angular deviation, the difference between individual orientation and average group heading. We also (2) show that conspecific attraction, which we approximated using nearest neighbor distance, was greater in sardine than squid. Finally, we (3) found that individuals of each species explicitly matched the orientation of groupmates, but that these matching responses were less rapid in squid than sardine. Based on these results, we hypothesize that information sharing is a comparably important function of social grouping for both taxa. On the other hand, some capabilities, including hydrodynamically conferred energy savings and defense against predators, could stem from taxon‐specific biology.more » « less
-
The unique engulfment filtration strategy of microphagous rorqual whales has evolved relatively recently (<5 Ma) and exploits extreme predator/prey size ratios to overcome the maneuverability advantages of swarms of small prey, such as krill. Forage fish, in contrast, have been engaged in evolutionary arms races with their predators for more than 100 million years and have performance capabilities that suggest they should easily evade whale-sized predators, yet they are regularly hunted by some species of rorqual whales. To explore this phenomenon, we determined, in a laboratory setting, when individual anchovies initiated escape from virtually approaching whales, then used these results along with in situ humpback whale attack data to model how predator speed and engulfment timing affected capture rates. Anchovies were found to respond to approaching visual looming stimuli at expansion rates that give ample chance to escape from a sea lion-sized predator, but humpback whales could capture as much as 30–60% of a school at once because the increase in their apparent (visual) size does not cross their prey’s response threshold until after rapid jaw expansion. Humpback whales are, thus, incentivized to delay engulfment until they are very close to a prey school, even if this results in higher hydrodynamic drag. This potential exaptation of a microphagous filter feeding strategy for fish foraging enables humpback whales to achieve 7× the energetic efficiency (per lunge) of krill foraging, allowing for flexible foraging strategies that may underlie their ecological success in fluctuating oceanic conditions.more » « less
An official website of the United States government
